|
Twitter
|
Facebook
|
Google+
|
VKontakte
|
LinkedIn
|
Viadeo
|
English
|
Français
|
Español
|
العربية
|
 
International Journal of Innovation and Applied Studies
ISSN: 2028-9324     CODEN: IJIABO     OCLC Number: 828807274     ZDB-ID: 2703985-7
 
 
Tuesday 20 November 2018

About IJIAS

News

Submission

Downloads

Archives

Custom Search

Contact

Connect with IJIAS

  Now IJIAS is indexed in EBSCO, ResearchGate, ProQuest, Chemical Abstracts Service, Index Copernicus, IET Inspec Direct, Ulrichs Web, Google Scholar, CAS Abstracts, J-Gate, UDL Library, CiteSeerX, WorldCat, Scirus, Research Bible and getCited, etc.  
 
 
 

Modeling and simulation of the pin structure of solar cell based on polycrystalline silicon


[ Modélisation et simulation de la cellule solaire de structure pin à base de silicium polycristallin ]

Volume 4, Issue 1, September 2013, Pages 195–202

 Modeling and simulation of the pin structure of solar cell based on polycrystalline silicon

Nisrine Benloucif1

1 Département de l'électronique, Faculté des sciences de l'ingénieur, Constantine, Algeria

Original language: French

Received 10 July 2013

Copyright © 2013 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract


In this work we propose the modeling of rear passivation effect on the performance of the polycrystalline solar cell. The rear passivation layers can reflect photons to the interior of the cell. Thus, prolonging their target and making easy their absorption while decreasing the surface recombination velocities of minority carriers at the base area. The conversion efficiency is estimated at 10.49 % for an optimal rear passivation using thin oxide /Silicon Nitride/Silicon oxide. In addition, Front passivation by the silicon nitride of polycrystalline solar cell has been proposed. We noted a very clear improvement of the efficiency for high Ammonia (NH3) to Silane (SiH4) gas flow ratio, the efficiency reaches 12.88% for R=10. We have also contributed in the modelling of grain boundaries current density in polysilicon. Electrical simulation shows the influence of grain boundaries surface recombination velocity in the optimization of the conversion efficiency. We noted that the sufficient and optimal surface recombination velocity 104 cm/s at the emitter heavily doped gives the optimum output. Therefore, the reduce of the grain boundaries surface recombination velocity at base region slightly doped increases the performance of the cell, it's about 10 cm/s. The current density at the grain boundaries is closely related to the potential barrier at grain boundaries. Indeed, the increase in current density indicates a decrease in potential barrier. Finally, we can conclude that Silicon nitride/ P+ N / thin oxide /Silicon Nitride/Silicon oxide multilayer structure can be preferment for photovoltaic applications.

Author Keywords: Polycrystalline silicon, Rear passivation, Silicon nitride, Grain boundary, Conversion efficiency.


How to Cite this Article


Nisrine Benloucif, “Modeling and simulation of the pin structure of solar cell based on polycrystalline silicon,” International Journal of Innovation and Applied Studies, vol. 4, no. 1, pp. 195–202, September 2013.